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New Theory and Algorithms for Compressive Sensing

Final Report

Richard G. Baraniuk

1 Introduction

In this report we begin by restating the motivation for our work, and review the project objectives. We present our
results and follow each research thrust with potential future areas of work. We conclude with a list of publications
supported by the grant, and a list of project personnel.

1.1 Review of motivation

Over the past several years, sensors and signal processing algorithms and hardware have been under increasing
pressure to accommodate:

• ever larger and higher-dimensional data sets, including samples of wideband radio frequency (RF) signals, high-
resolution images and video, volumetric data, three-dimensional (3-D) video, 4-D+ lightfields, and beyond;

• ever faster capture, sampling, and processing rates;

• ever lower power consumption; in order to permit remote, battery operation for long periods;

• networked sensing schemes for spatially distributed sources and phenomena;

• communication over ever more difficult channels; and

• radically new sensing modalities.

Fortunately, over the same time period, there has been an enormous increase in computational power and data
storage thanks to Moore’s Law, which provides a new angle to tackle these challenges.

We are currently on the verge of moving from a digital signal processing (DSP) paradigm, where analog signals are
sampled periodically to create their digital counterparts for processing, to a computational signal processing (CSP)
paradigm, where analog signals will be converted (often directly) to any of a number of intermediate representations
for processing using computational and optimization techniques. At the foundation of CSP lie new uncertainty
principles that generalize Heisenberg’s between the time and frequency domains, the concepts of compressibility
and sparsity, and the new theory of compressive sensing (CS).

The enabling idea is that natural signals and other data often contain some type of structure that makes them
compressible. A compressible signal of length N can be well approximated using K real numbers, with K � N .
Many audio signals, natural images, and manmade signals, for example, are compressed by a factor of 10 or
more when expressed in terms of their largest Fourier or wavelet coefficients. The usual approach to acquiring a
compressible signal is to take measurements in the Dirac basis and then use a nonlinear algorithm, such as a speech,
MP3, JPEG, or MPEG coder, to obtain a more efficient approximation.

But this approach is not practicable if the signal is presented at a high rate (as in a radar system) or if the
measurement device has limited computational resources (as in a sensor network). Fortunately, over the past two
years a new theory of Compressive Sensing (CS) has emerged, in which an incoherent linear projection is used to
acquire an efficient representation of a compressible signal directly using just M ≈ K � N measurements [1–6].
Interestingly, random projections play a major role. The signal is then reconstructed by solving an inverse problem
either through a linear program or a greedy pursuit.

CS offers a fresh approach to framing and solving a number of timely and challenging problems in signal and
image processing and imaging. In this project, we have explored its potential as a dimensionality reduction tool,
as a distributed source coding system, and as a sensing framework for radar systems.
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Figure 1: Pseudo-random demodulation scheme for AIC.

1.2 Review of project objectives

This project aimed at exploring the foundations and applications of CS in signal and image processing and imaging
problems. Specifically, we investigated:

1. Information scalability of CS The CS literature has focused almost exclusively on problems in signal
reconstruction, approximation, and estimation in noise. However, random projections have a long history as a
dimensionality reduction tool for more general statistical modeling and classification problems [7]. We explored
the information scalability of CS to a range of statistical inference tasks. In particular, we investigated how
CS principles can achieve direct, high-accuracy target detection/recognition from CS measurements without
reconstruction the signal/image involved and using fewer measurements. We also investigated “analog-to-
information conversion,” illuminating the benefits of applying CS to high-rate analog-to-digital conversion
problems.

2. Distributed sensing and encoding using CS The CS literature has focused almost exclusively on prob-
lems involving single sensors, signals, or images. However, many important applications involve distributed
networks or arrays of sensors. We developed theory and algorithms for distributed compressive sensing (DCS)
that enable new signal acquisition and coding algorithms for multi-signal ensembles and sensor networks that
exploit both intra- and inter-signal correlation structures. Specifically, we used graphical models to derive
explicit performance bounds.

3. CS-based radar signal processing and imaging We investigated how CS concepts can enable new and
simplified kinds of radar imaging hardware and algorithms. We formalized our approach to 1-D CS radar and
expanded our existing work to a 2-D SAR CS imaging problem. We anticipate that our techniques will be
particularly appropriate for inexpensive networks/arrays of radar receivers.

2 Information scalability of CS

2.1 Summary of results

Our work on information scalability was centered on two thrusts. The first was the theory and application of analog-
to-information conversion. We applied CS principles to perform accurate analog-to-digital conversion on high rate
signals, using a sub-Nyquist sampling rate. We developed new theory, algorithms, performance bounds, and a
prototype implementation for an analog-to-information converter based on random demodulation. The architecture
is particularly apropos for wideband signals that are sparse in the time-frequency plane. Our end-to-end simulations
of a complete transistor-level implementation proved the concept under the effect of circuit nonidealities [8].

The second thrust was applying CS principles to detection and classification problems. Our approach was based
on the generalized likelihood ratio test; in the case of image classification, it exploits the fact that a set of images
of a fixed scene under varying articulation parameters forms a low-dimensional, nonlinear manifold. Exploiting
recent results showing that random projections stably embed a smooth manifold in a lower-dimensional space, we
developed the multiscale smashed filter as a compressive analog of the familiar matched filter classifier. In a practical
target classification problem using a single-pixel camera that directly acquires compressive image projections, we
achieved high classification rates using many fewer measurements than the dimensionality of the images.

2.2 Analog-to-information conversion

2.2.1 Compressive sensing background

Compressive Sensing (CS) provides a framework for acquisition of an N × 1 discrete-time signal vector x = Ψα
that is compressible in some sparsity basis or frame matrix Ψ (where each column is a basis or frame vector ψi). By
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Figure 2: Comparison of Spectrograms obtained from full and CS compressed versions of a frequency hopping signal. The
signal is a single side-band AM signal, whose carrier frequency changes periodically over time. (left) Spectrogram from
original signal. (right) Spectrogram from CS reconstruction with measurement rate equal to 25% of Nyquist rate.

compressible we mean that the entries of α = [α1, α2, . . . , αN ], when sorted from largest to smallest, decay rapidly
to zero; such a signal is well approximated using a K-term representation, consisting of the terms of α with the K
largest magnitudes while setting all the other terms to zero. Note that, by definition, signals that have only a few
nonzero coefficients are compressible as well.

The CS framework [4, 6] demonstrates that a signal that is compressible in one basis Ψ can be recovered to
a quality similar to that of a K-term approximation from M = cK nonadaptive linear projections onto a second
basis Φ that is incoherent with the first, with c a small overmeasuring constant. By incoherent, we mean that
the rows φj of the matrix Φ cannot sparsely represent the elements of the sparsity-inducing basis ψi, and vice
versa. Thus, rather than measuring the N -point signal x directly, we acquire the M � N linear projections
y = Φx + n = ΦΨα+ n, where n represents the noise inherent to the measurement process. For brevity, we define
the M ×N matrix Θ = ΦΨ.

Since M < N , recovery of the signal x from the measurements y is ill-posed in general; however, the additional
assumption of signal compressibility in the basis Ψ makes recovery both feasible and practical. The recovery of the
set of transform coefficients α can be achieved through optimization [9] by searching for the signal with the smallest
`1 norm for the coefficient vector α that agrees with the M observed measurements in y within the margin of error
given by the magnitude of the noise ε ≥ ‖n‖2:

α̂ = arg min ‖α‖1 such that ‖y −Θα‖2 ≤ ε (1)

This optimization problem, also known as Basis Pursuit with Denoising (BPDN) [10] can be solved with tradi-
tional convex programming techniques whose computational complexities are polynomial in N . At the expense of
slightly more measurements, iterative greedy algorithms like Orthogonal Matching Pursuit (OMP) [11] can also be
applied to the recovery problem.

2.2.2 Real-time CS

Our signal acquisition system consists of three main components; demodulation, filtering, and uniform sampling.
As seen in Figure 1, the signal is modulated by a psuedo-random maximal-length PN sequence of ±1’s. We call this
the chipping sequence pc(t); its chipping rate, i.e. the rate of change of symbols, must be faster than the Nyquist
rate for the input signal. The purpose of such modulation is to provide randomness necessary for successful CS
recovery. The modulation is followed by a low-pass filter with impulse response h(t). Finally, the signal is sampled
at rate M using a traditional ADC. This system can be formulated as a CS measurement matrix as seen in [12].

2.2.3 Reconstruction for analog time-frequency sparse signals

We consider the case of wideband signals that are time-frequency sparse in the sense that at each point in time they
are well-approximated by a few local sinusoids of constant frequency. As a practical example, consider sampling
a frequency-hopping communications signal that consists of a sequence of windowed sinusoids with frequencies
distributed between f1 and f2 Hz. The bandwidth of this signal is f2 − f1 Hz, which dictates sampling above the
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Nyquist rate of 2(f2 − f1) Hz to avoid aliasing. We are interested in the case where f2 − f1 is very large and the
signal is compressible, since the AIC will achieve much better performance than an ADC.

It is well known that signals that are localized in the time-frequency domain have compact transformations
under the Gabor transform, which is defined as

x̂(τ, f) = 〈x(t), ψτ,f (t)〉,

i.e. the coefficient measures the inner product of the signal with the Gabor atoms

ψτ,f (t) = g(t− τ)e±j2πft

where g is a window function with ‖g‖2 = 1 [13]. We will leverage this compact nature during the reconstruction
of the signal to obtain a representation directly in the time-frequency domain, without performing reconstruction
of the original time signal.

The conventional tool for this class of signals is a spectrogram. A spectrogram is assembled using the magnitude
of short-time Fourier transforms (STFT) that performs Fourier analysis of shifted windowed versions of the input
signals to establish frequency content at local time neighborhoods. The STFT is written as

α[l,m] =
〈
x, ψlτ,m

n

〉
=
∫ ∞

−∞
x(t)g(t− lτ)e−j2πmt/ndt

for l = 1, . . . , n/τ and m = 1, . . . , n. This tool provides a visual representation of the Fourier spectrum of a signal
over time. The spectrogram can be thought of as a uniform sampling of the coefficients of the signal under the
Gabor transform. Thus, by utilizing a dictionary matrix Ψ consisting of a sampling of the Gabor atoms, the
signal x can be represented using a sparse or compressible vector α under the dictionary Ψ. In this fashion,
our sparse reconstruction of the signal will be obtained directly in the time frequency domain - we observe the
spectrogram directly without requiring reconstruction of the original signal. An example is shown in Figure 2(a)
where the spectrogram of a single sideband AM frequency hopping signal is displayed. We see that for small ranges
of time, the signal is well identified by its carrier frequency, but when we consider the whole signal length there
are many carriers to isolate. The spectrogram pictured in Figure 2(b) shows reconstruction of the signal from
AIC measurements using a Gabor dictionary with a boxcar window. The carriers in the reconstruction are easily
identified. The noise appears due to the non-sparse structure of the input signal; however, its compressibility allows
us to recover the largest components.

As a bonus, when the we reconstruct the sparse representation α from our measurements y, the values in α
directly correspond to the coefficients in the spectrogram. This is apparent from the formulation of the Gabor
atoms and the STFT. A spectrogram analysis can be immediately displayed from α without final reconstruction of
the signal’s estimated time representation x̂.

2.2.4 Analog-to-information system performance

In this section we wish to characterize the SNR of the AIC system using known analysis of CS performance. We
present a theorem for K-sparse signals, which gives insight into the SNR behavior of the AIC system. The following
definition is used in the theorem.

Definition 1 A matrix Φ of size M × N holds the K-Restricted Isometry Property (K-RIP) with constant δK if
for all x ∈ RN with ‖x‖0 = K,

(1− δK)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δK)‖x‖2.

Theorem 1 Let x be an K-sparse signal, i.e. ‖x‖0 = K, and let y = Φx represent an AIC measurement setup,
where we label reconstruction from the measurements y as x] with AIC reconstruction using BPDN. If Φ holds the
K-Restricted Isometry Property (RIP) with constant δK and if δ3K + 3δ4K < 2, then the SNR of the AIC system

obeys the lower bound SNRAIC = 20 log
(
‖x‖2
‖x]−x‖2

)

≥ SNRsystem − 20 log((1 + δK)C1,K)
where SNRsystem is the SNR of the sampling subsystem and C1,K is a constant depending only on K.

The condition on the RIP constants holds for random Gaussian matrices when the number of rows is large enough.
The theorem is proven in [14]. This bound on the performance decay will depend on the compressibility of the
signal and the class of matrix Φ applied. As an example, if a Gaussian random matrix Φ is used with a large enough
row-to-column ratio, and the signal has a sparsity K = N/10, the loss in performance is approximately 23dB.
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2.3 The smashed filter

As the second thrust of our work on information scalability, we formulated a classification algorithm that uses
compressive multiscale measurements to exploit the low-dimensional manifold structure inherent in the signal classes
used in target recognition applications. We learned this manifold structure from training data, which served as a
sampling of points from the manifolds. Such structure allowed us both to reduce the dimensionality of the training
data through random measurements, and to limit the amount of training data required to perform the classification.

2.3.1 Generalized likelihood ratio test

In our setting, we have P possible classes and we define the hypothesis Hi to be that the observed image x ∈ RN
belongs to class Ci for i = 1, . . . , P . For each class Ci, an element x ∈ Ci can be parameterized by a unique K-
dimensional parameter vector Θi ∈ Θi, i.e. x = fi(Θi) for some fi; an example parameter is the pose of the object in
the scene (translation, rotation, etc.). If the mapping fi is well-behaved, the collection of signals {fi(Θi) : Θi ∈ Θi}
forms a K-dimensional manifold embedded in the ambient signal space.

We will first assume that noisy measurements of x are taken, y = x + ω, giving us a distribution p(y|Θi,Hi)
for the measured signal y under hypothesis Hi and parameters Θi. The GLRT classifier is

C(y) = arg max
i=1,...,P

p(y|Θ̂i,Hi), (2)

where
Θ̂i = arg max

θ∈Θi

p(y|Θ,Hi) (3)

denotes the maximum likelihood estimate (MLE) of the parameters Θi under hypothesis Hi. Under an additive
white Gaussian noise (AWGN) model for ω, the likelihood for each hypothesis Hi becomes

p(y|Θ̂i,Hi) ∝
1

‖y − fi(Θ̂i)‖22
, (4)

meaning that after estimates for the parameters are obtained for each class, the GLRT reduces to nearest-neighbor
classification among the available hypotheses.

2.3.2 Manifold parameter estimation

In order to implement the GLRT as described above, we first need to obtain estimates of the parameter vectors
Θ̂i from the noisy measurements y under each of the hypotheses. A natural approach to this problem is through
nonlinear least-squares, in which we seek the value of Θi that minimizes the objective function

D(Θi) = ‖y − fi(Θi)‖22. (5)

For differentiable D(Θ), we can use Newton’s method to obtain iterative estimates of the parameters as

Θn
i = Θn−1

i − [H(Θn−1
i )]−1J(Θn−1

i ) (6)

for the nth iteration, with J(Θ) = ~∇D(Θ) (the gradient) and H(Θ) the Hessian matrix of D; with a good initial
choice the algorithm converges to the correct estimate. Note that the classical matched filter is an elegant method
for minimizing (5) on the manifold consisting of all possible shifts of a signal. In (6) we extend this approach to
arbitrary differentiable manifolds. In essence, (6) provides a way of generalizing the classical matched filter to a
richer class of manifolds, while reducing the number of samples from the manifold required during the estimation
process.

However, in extending this to our compressive classification setting, we face a number of challenges. First, in
general, implementing such an estimator requires complete knowledge of the function fi or the ability to evaluate
fi(Θ) for all possible values of Θ. In some practical settings this may not be possible, but this is easily overcome
since a dense sampling of the parameter space Θi and a nearest neighbor (NN) estimation rule can give acceptable
performance, albeit with a potentially high computational cost. Potentially more challenging is that: (i) our
manifolds may not be differentiable, in which case we cannot directly apply (6) [15], and (ii) it may be possible
that random projections of our data could alter the manifold structure of our signals. Fortunately, we can overcome
both of these challenges through the use of multiscale measurements.
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2.3.3 Multiscale measurements for image appearance manifolds

In the case of interest—target classification—the classes Ci are IAMs that each correspond to different classes of
targets. The parameter vector Θi denotes the articulation parameters for the target, such as rotation, translation,
angle of view, etc. The resulting parametric manifolds are nonlinear—since linear combinations of manifold elements
are in general not contained in the manifold—and non-differentiable—due to prevalent changes in hard edges in the
image view caused by rotations in and out of view, occlusions, etc. Previous research [15] has identified a multiscale
structure to such manifolds that can be exploited through regularization to allow differentiability at several scales.
This is achieved through the use of a nested set of regularization kernels G1, G2, . . . for each iteration, with the
kernels becoming increasingly sharper. Thus, instead of applying Newton’s method to f(Θi) directly, we use an
objective function for the regularized images; for the nth iteration, the objective function becomes

Dn(Θi) = ‖Gny −Gnfi(Θi)‖22, (7)

which uses the corresponding regularization kernel.

2.3.4 Compressive measurements for smooth manifolds

It has also been shown that most of the structure of a smooth signal manifold is preserved under a random lower
dimensional projection [16]. More specifically, for a K-dimensional manifold embedded in N -dimensional space,
with high probability a random M -dimensional projection is invertible—and thus preserves the manifold structure—
provided that M > CK log(N) for some constant C that depends on the smoothness of the manifold. Thus, instead
of performing parameter estimation based on a direct measurement of the signal y = x + ω, we can choose to
observe only a lower dimensional, randomly projected version y = Φx + ω, where Φ is an M × N measurement
matrix with independent, randomly distributed entries. Accordingly, we update the objective function to

DC(Θi) = ‖y − Φfi(Θi)‖22. (8)

When Gaussian random measurements are used, this is equivalent to employing different colored Gaussian random
measurements at each iteration; see [17] for more details. Moreover, the dimensionality reduction affords savings
in computational complexity and storage requirements of the estimation and classification algorithms described
earlier.

2.3.5 The multiscale smashed filter

We are now in a position to describe how we will overcome the challenges listed at the end of Section 2.3.2. In [18]
we introduced the smashed filter as a method for classification that uses compressive measurements for classification
where each class is represented by a low-dimensional manifold. This is inspired by the fact that random projections
do not disturb the structure of smooth manifolds, as described above. However, as we have just observed, in our
setting the manifolds might not be smooth. To address this problem, we exploit the multiscale structure of IAMs
and combine the use of multiscale measurements with random projections. Thus we smooth the IAMs so that the
projections preserve their geometry. This uses a measurement matrix of the form

Φ =




Φ1G1

...
ΦSGS


 ,

where Φn is an Mn × N matrix with randomly distributed entries and Gn is the regularization kernel for the nth

scale. The resulting measurements can be partitioned into measurements for each of the regularized versions, i.e.,
yn = ΦnGnx + ωn, which are used on sequential iterations of Newton’s method by employing the corresponding
objective functions

DC
n (Θi) = ‖yn − ΦnGnfi(Θi)‖22. (9)

This classification algorithm, which we call the multiscale smashed filter, employs the compact and multiscale nature
of the manifolds defined by the signal classes to estimate the signal parameters under each class hypothesis, together
with the GLRT/NN classification rule from Section 2.3.1.

2.3.6 Advantages of compressive classification

In addition to the computational and storage savings achieved by compressive classification, our proposed method
shares many advantages previously shown for CS reconstruction. In particular, random projections allow for
universal estimation and classification, in the sense that random projections preserve any low-dimensional structure
of a signal class with high probability. Additionally, we attain progressivity in the sense that a larger number of
projections translate into higher classification rates due to increased noise tolerance.
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(a) Tank (b) School Bus (c) Truck

Figure 3: Models used for classification experiments.
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Figure 4: Vehicle classification result from compressive imaging measurements using the smashed filter. The probability of classifi-
cation and the position estimation error improve as the number of measurements increases.

2.3.7 Experimental performance
We performed experiments to evaluate the multiscale smashed filter in a target classification setting using synthet-
ically generated binary random measurements. In these experiments we define three classes, each for a different
vehicle model: a T-72 tank, a school bus and a truck. The unknown parameter in each vehicle class is the location
of the vehicle in the image, which can vary in an area of 32×32 pixels. The models used are shown in Figure 3. For
each of the vehicles, multiscale measurements were taken using five different resolutions – from 8× 8 and 128× 128
pixels – with the same number of measurements taken at each of them.

We tested the performance of the multiscale smashed filter classifier under different levels of Gaussian noise.
The measurements for each position/class combination were classified using a multiscale smashed filter trained on
all other available data points. For each of the target classes, one of the sampled rotations was chosen at random
as an initial estimate. The gradient of the manifold fi(Θi) was estimated using consecutive points in the manifold
sampling for each parameter, including that of the current estimate. We then executed Newton’s method using
measurements at different resolutions at each iteration, proceeding from the coarsest to the finest scale. After
the position was estimated under each hypothesis, nearest neighbor classification was performed. We repeated the
experiment 10,000 times for each testing point, with randomly selected starting points each time, and we varied the
number of measurements taken from 5 to 60. We also varied the power of the noise added to the measurement vector
Results are shown in Figure 4, and show that due to the low-dimensional structure of the underlying IAM, very
few measurements are necessary to achieve high classification rates. Additionally, the performance of the algorithm
degrades gracefully as the power of the noise present increases.

2.4 Future work

The results of both of our thrusts lead to several areas of future work. Analog-to-information theory and practice
can be applied to any sensing scenario in which the volume of data exceeds traditional analog-to-digital conversion
abilities, or makes them cost-prohibitive. Therefore continued exploration into implementation, reconstruction
technique, performance analysis, and robustness to noise would be fruitful. With the compressive classification
thrust, we hope to develop more sophisticated algorithms to exploit the manifold structure to more efficiently
obtain the ML estimates required by the smashed filter. For example, rather than an exhaustive nearest-neighbor
search, which could be computationally prohibitive for a large training set, a greedy approach might offer similar
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performance at significant computational savings; other approaches that exploit the smoothness of the manifolds
could also be beneficial.

3 Distributed compressive sensing

3.1 Summary of results

The CS framework has been proposed for efficient acquisition of sparse and compressible signals through incoherent
measurements. In past work, we introduced a new concept of joint sparsity of a signal ensemble and used them
in demonstrating distributed CS schemes. In this project we considered joint sparsity via graphical models that
link the sparse underlying coefficient vector, signal entries, and measurements. Our main results are converse and
achievable bounds establishing that the number of measurements required in the noiseless measurement setting is
closely related to the dimensionality of the sparse coefficient vector. Single signal and joint (single-encoder) CS are
special cases of joint sparsity, and their performance limits fit into our graphical model framework for distributed
(multi-encoder) CS.

3.2 Review of joint sparsity models

In this section, we generalize the notion of a signal being sparse in some basis to joint sparsity within a signal
ensemble. We begin with basic notation. Let Λ := {1, 2, . . . , J} be the set of signal indices. Denote the signals in
the ensemble by xj ∈ RN , where j ∈ Λ. We use xj(n) to denote sample n in signal j, and assume for the sake
of illustration that these signals are sparse in the canonical basis, i.e., Ψ = I. The entries of the signal can take
arbitrary real values, and the framework is extendable to arbitrary Ψ.

We denote by Φj the measurement matrix for signal j; Φj is Mj ×N and, in general, entries of Φj are different
for each j. Thus, yj = Φjxj consists of Mj < N random measurements of xj . We emphasize random Gaussian
matrices Φj in the following, but other measurement matrices are possible. To compactly represent the signal
and measurement ensembles, we define X = [xT1 . . . xTJ ]T ∈ RJN and Y = [yT1 . . . yTJ ]T ∈ R

∑
Mj . Finally, we also

define Φ = diag(Φ1, . . . ,ΦJ), where diag denotes a matrix diagonal concatenation, to get Y = ΦX.

3.2.1 Algebraic framework

Our framework enables analysis of a given ensemble x1, x2, . . . , xJ in a “jointly sparse” sense, as well as a metric
for the complexities of different signal ensembles. It is based on a factored representation of the signal ensemble,
and decouples location and value information. We begin by illustrating the single signal case.

Single signal case: Consider a sparse x ∈ RN with K < N nonzero entries. Alternatively, we can write
x = Pθ, where θ ∈ RK contains the nonzero values of x, and P is an identity submatrix, i.e., P contains K columns
of the N × N identity matrix I. To model the set of all possible sparse signals, let P be the set of all identity
submatrices of all possible sizes N ×K ′, with 1 ≤ K ′ ≤ N . We refer to P as a sparsity model. Given a signal x,
one may consider all possible factorizations x = Pθ, with P ∈ P. Among them, the smallest dimensionality for θ
indicates the sparsity of x under the model P.

Multiple signal case: For multiple signals, consider factorizations of the form X = PΘ where X ∈ RJN as
above, P ∈ RJN×D, and Θ ∈ RD. We refer to P and Θ as the location matrix and value vector, respectively. A
joint sparsity model (JSM) is defined in terms of a set P of admissible location matrices P with varying numbers
of columns. Unlike the single signal case, there are multiple choices for what matrices P belong to a joint sparsity
model P.

Minimal sparsity: For a given ensemble X, let PF (X) denote the set of feasible location matrices P ∈ P for
which a factorization X = PΘ exists. Among the feasible location matrices, we let PM (X) ⊆ PF (X) denote the
matrices P having the minimal number of columns. The number of columns D for each P ∈ PM (X) is called the
joint sparsity level of X under the model P. Generally speaking, the minimal location matrices PM (X) permit the
most efficient factorizations of the signal ensemble; we show in Section 3.3 that these matrices dictate the number
of measurements.

We restrict our attention in this paper to scenarios where each signal xj is generated as a combination of two
components: (i) a common component zC , which is present in all signals, and (ii) an innovation component zj , which
is unique to each signal. These combine additively, giving xj = zC + zj , j ∈ Λ. However, individual components
might be zero-valued in specific scenarios.
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3.2.2 Example joint sparsity model: JSM-1

In the sparse common and innovations (JSM-1) model [19], the common component zC and each innovation com-
ponent zj are sparse with respective sparsities KC and Kj . Within our algebraic framework, the class of JSM-1
signals correspond to the set of all matrices

P =



PC P1 . . . 0
...

...
. . .

...
PC 0 . . . PJ


 ,

where PC and {Pj}j∈Λ are arbitrary identity submatrices of sizes N×KC and N×Kj , respectively, and 0 denotes a
zero matrix of appropriate size. Given X = PΘ, we can partition the value vector Θ = [θTC θT1 θT2 . . . θTJ ]T , where
θC ∈ RKC and each θj ∈ RKj . When generating a signal according to this model, we have zC = PCθC , zj = Pjθj ,
j ∈ Λ. If P ∈ PM (X), then the joint sparsity is D = KC +

∑
j∈ΛKj .

Sparsity reduction: If a signal ensemble X = PΘ, Θ ∈ RD, were to be generated by a selection of PC and
{Pj}j∈Λ, where all J + 1 identity submatrices share a common column vector, then P /∈ PM (X). By removing the
instance of this column in PC , one obtains Q ∈ P such that there exists Θ′ ∈ RD−1 with X = QΘ′. We term this
phenomenon sparsity reduction, since it reduces the effective joint sparsity of a signal ensemble.

3.3 DCS goal: Bound on measurements rates

We seek conditions on the number of measurements from each sensor that guarantee perfect recovery of X given Y .
Within our algebraic framework, recovering X involves determining a value vector Θ and location matrix P such
that X = PΘ. Two challenges are present. First, a given measurement depends only on some of the components
of Θ, and the measurement budget should be adjusted between the sensors in order to gather sufficient information
on all components of Θ. Second, the decoder must identify a feasible location matrix P ∈ PF (X) from the set P
and the measurements Y . In this section, we develop tools to address these challenges and characterize the number
of measurements needed by them.

3.3.1 Graphical model framework

We introduce a graphical representation that captures the dependencies between the measurements in Y and the
value vector Θ, represented by Φ and P . Consider a feasible decomposition of X into P ∈ PF (X) and the
corresponding Θ. We define the following sets of vertices, illustrated in Figure 5(a): (i) the set of value vertices VV
has elements with indices d ∈ {1, . . . , D} representing entries of the value vector θ(d); (ii) the set of signal vertices
VS has elements with indices (j, n) representing the signal entries xj(n), with j ∈ Λ and n ∈ {1, . . . , N}; and (iii)
the set of measurement vertices VM has elements with indices (j,m) representing the measurements yj(m), with
j ∈ Λ and m ∈ {1, . . . ,Mj}. The cardinalities of these sets are |VV | = D, |VS | = JN and |VM | =

∑
j∈ΛMj .

Let P be partitioned into location submatrices P j , j ∈ Λ, so that xj = P jΘ; here P j is the restriction of P to
the rows that generate the signal xj . We then define the bipartite graph G = (VS , VV , E), determined by P , where
there exists an edge connecting (j, n) and d if and only if P j(n, d) 6= 0.

A similar bipartite graph G′ = (VM , VS , E′), illustrated in Figure 5(a), connects between the measurement
vertices {(j,m)} and the signal vertices {(j, n)}; there exists an edge in G′ connecting (j, n) ∈ VS and (j,m) ∈ VM
if Φj(m,n) 6= 0. When the measurements matrices Φj are dense, which occurs with probability one for i.i.d.
Gaussian random matrices, the vertices corresponding to entries of a given signal xj in VS are all connected to all
vertices corresponding to the measurements yj in VV . Figure 5 shows an example for dense measurement matrices:
each measurement vertex (j, ·) is connected to each signal vertex (j, ·).

The graphs G and G′ can be merged into Ĝ = (VM , VV , Ê) that relates entries of the value vector to measure-
ments. Figure 5(b) shows the example composition of the previous two bipartite graphs. Ĝ is used to recover Θ
from the measurement ensemble Y when P is known.

3.3.2 Quantifying dependencies and redundancies

We now define the subset of the value vector entries that is measured exclusively by a subset Γ of the sensors in
the ensemble; the cardinality of this set will help determine the number of measurements the sensors in Γ should
perform. We denote by E(V ) the neighbors of a set of vertices V through the edge set E.
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Figure 5: Bipartite graphs for distributed compressed sensing. (a) G = (VS , VV , E) connects the entries of each signal with
the value vector coefficients they depend on; G′ = (VM , VS , E′) connects the measurements at each sensor with observed

signal entries. The matrix Φ is a dense Gaussian random matrix, as shown in the graph. (b) Ĝ = (VM , VV , Ê) is the
composition of G and G′, and relates between value vector coefficients and measurements. (c) Sets of exclusive indices for
our example.

Definition 2 Let G = (VS , VV , E) be the bipartite graph determined by P , let Γ ⊆ Λ, and let VS(Γ) be the set of
vertices VS(Γ) = {(j, n) ∈ VS : j ∈ Γ, n ∈ {1, . . . , N}}. We define the set of exclusive indices for Γ given P , denoted
I(Γ, P ), as the largest subset of {1, . . . , D} such that E(I(Γ, P )) ⊆ VS(Γ).

I(Γ, P ) is significant in our distributed measurement setting, because it contains the coefficients of θ that only
affect the signals in the set Γ and, therefore, can only be measured by those sensors. Figure 5(c) shows an example
setting of two signals of length N = 3 generated by a matrix P from the JSM-1 model, with the sets I({1}, P ) and
I({2}, P ) defined as the vertices in VV that connect exclusively with VS({1}) and VS({2}), respectively.

Overlaps: When overlaps between common and innovation components are present in a signal, we cannot
recover the overlapped portions of both components from the measurements of this signal alone; we need to recover
the common component’s coefficients using measurements of other signals that do not feature the same overlap.
Furthermore, these coefficients of the value vector are not included in I(Γ, P ). We thus quantify the size of the
overlap for all subsets of signals Γ ⊂ Λ under a feasible representation given by P and Θ.

Definition 3 The overlap size for the set of signals Γ ⊂ Λ, denoted KC,Γ, is the number of indices in which there
is overlap between the common and the innovation component supports at the signals j /∈ Γ; more formally,

KC,Γ(P ) = |{n ∈ {1, . . . , N} : zC(n) 6= 0, ∀j /∈ Γ, zj(n) 6= 0}|.

For the entire set of signals, the overlap size KC,Λ = 0.

For Γ 6= Λ, KC,Γ(P ) provides a penalty term due to the need for recovery of common component coefficients that
are overlapped by innovations in all other signals j /∈ Γ. The definition of KC,Λ accounts for the fact that all the
coefficients of Θ are included in I(Λ, P ).

3.3.3 Main results

Converse and achievable bounds on the number of measurements necessary for recovery are given below.

Theorem 2 (Achievable, known P ) Assume that a signal ensemble X is obtained from a common/innovation
component JSM P. Let {Mj}j∈Λ be a measurement tuple. Suppose there exists a full rank location matrix P ∈
PF (X) such that ∑

j∈Γ

Mj ≥ |I(Γ, P )|+KC,Γ(P ) (10)

for all Γ ⊆ Λ. If the Φj are random matrices having Mj rows of i.i.d. Gaussian entries for each j ∈ Λ, and if
Y = ΦX, then with probability one over Φ, there is a unique solution Θ̂ to the system of equations Y = ΦP Θ̂, and
hence the signal ensemble X can be uniquely reconstructed as X = P Θ̂.
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Theorem 3 (Achievable, unknown P ) Assume that a signal ensemble X is obtained from a common/innovation
component JSM P, and let Φj be random matrices having Mj rows of i.i.d. Gaussian entries for each j ∈ Λ. If
there exists a location matrix P ∗ ∈ PF (X) such that

∑

j∈Γ

Mj ≥ |I(Γ, P ∗)|+KC,Γ(P ∗) + |Γ| (11)

for all Γ ⊆ Λ, then X can be uniquely recovered from Y with probability one over Φ.

Theorem 4 (Converse) Assume that a signal ensemble X is obtained from a common/innovation component JSM
P. Let {Mj}j∈Λ be a measurement tuple. Suppose there exists a full rank location matrix P ∈ PF (X) such that

∑

j∈Γ

Mj < |I(Γ, P )|+KC,Γ(P ) (12)

for some Γ ⊆ Λ. Let Φj be any set of measurement matrices having Mj rows for each j ∈ Λ, and let Y = ΦX.
Then there exists a solution Θ̂ such that Y = ΦP Θ̂ but X̂ := P Θ̂ 6= X.

The number of measurements needed for recovery depends on the number of value vector coefficients that are
observed only by the sensors in Γ. The identification of a feasible location matrix P causes the 2 measurement-
per-sensor gap between the converse and achievable bounds (11-12). The algorithm used in Theorem 3 essentially
performs an `0 minimization to acquire Θ, where the correct P is identified using an additional cross-validation
step.

Discussion: The theorems can also be applied to the single sensor and joint measurement settings. In the single
signal setting, we will have x = Pθ with θ ∈ RK , and Λ = {1}; the theorem provides the requirement M ≥ K + 1,
which matches the existing requirements for reconstruction.

The joint measurement setting is equivalent to the single signal setting with a dense measurement matrix, as
all measurements are dependent on all signal entries. In this case, however, the distribution of the measurements
among the available sensors is irrelevant. Therefore, we only obtain a condition on the total number of measurements
obtained by the group of sensors as

∑
j∈{1,...,N}Mj ≥ D + 1.

3.4 Future Work

The use of graphical models allowed us to derive bounds on the number of measurements necessary to recover a
signal in a multi-sensor compressive sensing setting. It follows naturally to apply the insights our graphical model
framework gives us to a variety of sensing scenarios. The defined recovery technique requires an `0 minimization, so
investigation of a convex optimization method and measurement rates associated with it is also a direction worth
pursuing. Finally—and our graphical model approach is a step in the right direction—we still hope to bring together
an over-arching theory of rate-distortion analysis to distributed compressive sensing.

4 Compressive sensing radar

4.1 Summary of results

We took the principles of CS and applied them to both 1-D ranging radar and 2-D imaging radar. We demonstrated
that CS has the potential to make two significant improvements to radar systems by (i) eliminating the need for the
pulse compression matched filter at the receiver, and (ii) reducing the required receiver analog-to-digital conversion
bandwidth so that it need operate only at the radar reflectivity’s potentially low “information rate” rather than at
its potentially high Nyquist rate. These ideas could enable the design of new, simplified radar systems, shifting the
emphasis from expensive receiver hardware to smart signal recovery algorithms. We formalized our approach and
used it to accurately recover a 1-D ranging problem using only 50 percent of the measurements the Nyquist rate
alone would dictate, and recover a 2-D SAR test image using only 25 percent of the measurements that would have
been needed.
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Figure 6: Prototypical radar transmitter.
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Figure 7: Prototypical digital radar receivers for the transmitter in Fig. 6 perform matched filtering either in the (a) analog
or (b) digital domain.

4.2 CS-based radar

In order to illustrate our CS-based radar concept, consider a simplified 1D range imaging model of a target described
by u(r) with range variable r. If we let the transmitted radar pulse sT (t) interact with the target by means of a
linear convolution [20], then the received radar signal sR(t) is given by

sR(t) = A

∫
sT (t− τ)u(τ) dτ, (13)

where we have converted the range variable r to time t using t = 2r
c , with c the propagation velocity of light,

and where A represents attenuation due to propagation and reflection. If the transmitted signal has the property
that sT (t) ∗ sT (−t) ≈ δ(t) (which is true for PN and chirp signals), then a band-limited measurement of the radar
reflectivity u(t) can be obtained by pulse compression, that is, by correlating sR(t) with sT (t) in a matched filter
(recall Fig. 7) [20]. A/D conversion occurs either before or after the matched filtering, resulting in N Nyquist-rate
samples.

Our CS-based radar approach is based on two key observations. First, the target reflectivity functions u(t) that
we wish to obtain through the radar process are often sparse or compressible in some basis. For example, a set
of K point targets corresponds to a sparse sum of delta functions as in u(t) =

∑K
i=1 ai δ(t − κi); smooth targets

are sparse in the Fourier or wavelet domain; and range-Doppler reflectivities are often sparse in the joint time-
frequency (or ambiguity) domain [20]. Such target reflectivity functions u(t) are good candidates for acquisition
via CS techniques.

Second, time-translated and frequency-modulated versions of the PN or chirp signals transmitted as radar
waveforms sT (t) form a dictionary (the extension of a basis or frame) that is incoherent with the time, frequency,
and time-frequency bases that sparsify or compress the above mentioned classes of target reflectivity functions
u(t) [21]. This means that PN or chirp signals are good candidates for the rows of a CS acquisition matrix Φ as a
“random filter” where:

y(m) =
N∑

n=1

p(Dm− n)x(n) (14)

for m = 1, . . . ,M .
By combining these observations we can both eliminate the matched filter in the radar receiver and lower the

receiver A/D converter bandwidth using CS principles. Consider a new design for a radar system that consists of
the following components. The transmitter is the same as in a classical radar; the transmit antenna emits a PN
or chirp signal sT (t) (recall Fig. 6). However, the receiver does not consist of a matched filter and high-rate A/D
converter but rather only a low-rate A/D converter that operates not at the Nyquist rate but at a rate proportional
to the target reflectivity’s compressibility (see Fig. 8).

We make the connection explicit for a PN-based CS radar with a simple sampling model. Consider a target
reflectivity generated from N Nyquist-rate samples x(n) via u(t) = x(dt/∆e), n = 1, . . . , N , on the time interval
of interest 0 ≤ t < N∆. The radar transmits a PN signal generated from a length-N random Bernoulli ±1 vector
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Figure 8: Compressive radar receiver for the transmitter in Fig. 6 performs neither matched filtering nor high-rate analog-
to-digital conversion.
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Figure 9: CS radar example. (a) Transmitted PN pulse sT (t), (b) low-rate measurement y, and (c) true and recovered
reflectivity profiles u(t).

p(n) via sT (t) = p(dt/∆e). The received radar signal sR(t) is given by (13); we sample it not every ∆ seconds but
rather every D∆ seconds, where D = bN/Mc and M < N , to obtain the M samples, m = 1, . . . ,M ,

y(m) = sR(t)|t=mD∆

= A

∫ N∆

0

sT (mD∆− τ)u(τ) dτ

= A
N∑

n=1

p(mD − n)
∫ n∆

(n−1)∆

u(τ) dτ

= A
N∑

n=1

p(mD − n)x(n), (15)

which are precisely a scaled version of (14). In words, a PN sequence radar implements a random filter in the sense
of [21], and hence the low-rate samples y contain sufficient information to reconstruct the signal x corresponding to
the Nyquist-rate samples of the reflectivity u(t) via linear programming or a greedy algorithm. Chirp pulses yield
similar results.

Figure 9 illustrates the scheme in action. A radar reflectivity profile is probed with a PN pulse sequence, measured
at one-half the Nyquist sampling rate, and subsequently recovered exactly using an OMP greedy algorithm and a
sparsity frame Ψ combining delta spikes and Haar wavelets.

Additional gains can be expected for 2D CS radar imaging. We illustrate this with a simple simulation of SAR
data acquisition and imaging. Figure 10(a) shows the reflectivity function that is to be recovered from the SAR data.
We simulated a SAR data acquisition using the method described in [22]. Figure 10(b) shows the result of a 2D
CS implementation with four times undersampling, which gives an exact recovery of the reflectivity function. The
traditional SAR image (Fig. 10(c)) shows artifacts of the limited aperture of the imaging operator, which are absent
in the CS image. The result is similar to what is obtained with the feature-enhanced imaging approach of [23].
However, the CS-based approach has some advantages, such as an almost infinite number of sparse representations
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Figure 10: CS synthetic aperture radar (SAR) example. (a) 2D reflectivity, (b) CS SAR image, and (c) traditional SAR
image.

to choose from as well as more efficient signal recovery algorithms [24].

4.3 Future work

The initial success of our approach leads us to believe that CS principles can be applied beyond the area of complete
signal recovery. We showed that the information scalability of CS allows for a much wider range of statistical
inference tasks. Detection, classification, and recognition would all be useful applications for Radar. The fact they
require even fewer measurements than for complete reconstruction is another benefit.

Though we showed the benefits of CS-based radar, there are a number of challenges to be overcome before an
actual CS-based radar system will become a reality. First, the target reflectivity being probed must be compressible
in some basis, frame, or dictionary. Second, the signal recovery algorithms must be able to handle real-world radar
acquisition scenarios with sufficient computational efficiency and robust performance for noisy data. Third, there is
a subtle tradeoff to optimize between the reduction in sampling rate bN/Mc and the dynamic range of the resulting
CS system [8]. These are areas of active research for both our team and the broader CS community. In particular,
there could be links with recent work on finite rate of innovation sampling for ultrawideband communication
systems [25].

5 Publications supported by this grant

R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in IEEE Radar Conference, April 2007.

M. Davenport, M. Duarte, M. Wakin, J. Laska, D. Takhar, K. Kelly, and R. Baraniuk, “The smashed filter for
compressive classification and target recognition,” in Computational Imaging V at SPIE Electronic Imaging, 2007.

M. Duarte, M. Davenport, M. Wakin, J. Laska, D. Takhar, K. Kelly, and R. Baraniuk, “Multiscale random projec-
tions for compressive classification,” in IEEE Conference on Image Processing, 2007.

M. F. Duarte, M. B. Wakin, D. Baron, and R. G. Baraniuk, “Universal distributed sensing via random projec-
tions,” in International Conference on Information Processing in Sensor Networks, 2006.

M. Duarte, S. Sarvotham, D. Baron, M. Wakin, and R. Baraniuk, “Performance limits for jointly sparse sig-
nals via graphical models,” in Sensor, Signal and Info. Proc. Workshop, May 2008.

J. Laska, S. Kirolos, M. Duarte, T. Ragheb, R. Baraniuk, and Y. Massoud, “Theory and implementation of an
analog-to-information converter using random demodulation,” in IEEE Int. Symp. on Circuits and Systems, 2007.

14



C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen, “Locally competitive algorithms for sparse approxima-
tion,” in IEEE Conference on Image Processing, 2007.

C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen, “Sparse coding via thresholding and local competition
in neural circuits,” Neural Computation, vol. 20, pp. 2526–2563.

S. Sarvotham, D. Baron, and R. Baraniuk, “Measurements vs. bits: Compressed sensing meets information theory,”
in Allerton Conference on Communication, Control, and Computing, 2006.

M. B. Wakin and R. G. Baraniuk, “Random projections of smooth manifolds,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing, May 2006.

6 Professional personnel

Principle Investigator
Richard G. Baraniuk

Research Assistant and Professional Staff (part of grant duration)
Christopher Rozell

Postdoctoral Research Associate
Petros Boufounos

Graduate Student Research Assistants
Mark Davenport, Marco Duarte, Chinmay Hegde, Jason Laska, Matthew Moravec, Shriram Sarvotham

References

[1] E. Candès and T. Tao, “Near optimal signal recovery from random projections and universal encoding strate-
gies,” IEEE Trans. Info. Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[2] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information,” IEEE Trans. Info. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[3] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. on Information Theory, vol. 51,
pp. 4203–4215, 2005.

[4] E. Candès and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions,”
Found. of Comp. Math., vol. 6, pp. 227–254, Apr. 2006.

[5] E. Candès and J. Romberg, “Practical signal recovery from random projections,” submitted to IEEE Trans.
Signal Proc., January 2005.

[6] D. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[7] S. Dasgupta and A. Gupta, “An elementary proof of the johnson-lindenstrauss lemma,” tech. rep., 1999.

[8] J. Laska, S. Kirolos, M. Duarte, T. Ragheb, R. Baraniuk, and Y. Massoud, “Theory and implementation of an
analog-to-information converter using random demodulation,” in IEEE Int. Symp. on Circuits and Systems,
2007.

[9] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”
Communications on Pure and Applied Mathematics, vol. 59, pp. 1207–1223, Aug. 2006.

[10] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comp., vol. 20,
no. 1, pp. 33–61, 1998.

[11] J. Tropp and A. C. Gilbert, “Signal recovery from partial information via Orthogonal Matching Pursuit,” 2005.
Preprint.

15



[12] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk, “Analog-to-
information conversion via random demodulation,” in Proc. of the IEEE Dallas Circuits and Systems Workshop
(DCAS), 2006.

[13] S. Mallat, A Wavelet Tour of Signal Processing. San Diego: Academic Press, second ed., 1999.

[14] M. F. Duarte, J. Laska, and R. G. Baraniuk, “Theoretical bounds for signal-to-noise ratio in analog to infor-
mation conversion systems,” Tech. Rep. TREE-0608, Rice University ECE Department, Houston, TX, Sept.
2006.

[15] M. B. Wakin and R. G. Baraniuk, “High-resolution navigation on non-differentiable image manifolds,” in IEEE
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 5, (Philadelphia, PA), pp. V–1073–1076,
2005.

[16] R. G. Baraniuk and M. B. Wakin, “Random projections of smooth manifolds,” 2006. Preprint.

[17] Z. Wang, G. R. Arce, and J. L. Paredes, “Colored projections for compressed sensing,” in IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), (Honolulu, HI), 2007.

[18] M. A. Davenport, M. F. Duarte, D. Takhar, J. N. Laska, K. K. Kelly, and R. G. Baraniuk, “The smashed filter
for compressive classification and target recognition,” in Proc. IS&T/SPIE Symposium on Electronic Imaging:
Computational Imaging, (San Jose, CA), Jan. 2007.

[19] D. Baron, M. Duarte, S. Sarvotham, M. B. Wakin, and R. G. Baraniuk, “Distributed compressed sensing,”
Tech. Rep. TREE0612, Rice University, Houston, TX, Nov. 2006. Available at http://dsp.rice.edu/cs/.

[20] M. Skolnik, Radar Handbook. New York, NY, USA: McGraw Hill, 1970.

[21] J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. G. Baraniuk, “Random filters for compressive sampling and
reconstruction,” Proc. IEEE ICASSP, 2005.

[22] M. Cetin, Feature-Enhanced Synthetic Aperture Radar Imaging. Ph.D. Thesis Boston University, College of
Engineering, 2001.

[23] M. Cetin and W. C. Karl, “Feature-enhanced synthetic aperture radar image formation based on non-quadratic
regularization,” IEEE Trans. Image Processing, vol. 10, pp. 623–631, 2001.

[24] Z. Mou-yan and R. Unbehausen, “Methods for reconstruction of 2-D sequences from Fourier transform mag-
nitude,” IEEE Transactions on Image Processing, vol. 6, pp. 222–233, 1997.

[25] I. Maravic, J. Kusuma, and M. Vetterli, “Low-sampling rate UWB channel characterization and synchroniza-
tion,” J. Comm. and Networks, vol. 5, Dec. 2003.

16


	SF298Form R15400 final
	ONR N00014-06-1-0769 FINAL REPORT
	ONR N00014-06-1-0769 FINAL REPORT.pdf




